AMINO ACID METABOLISM
Dynamics of Protein And Amino Acid Metabolism

Dietary Proteins \rightarrow Digestion to Amino Acids \rightarrow Transport in Blood to Cells

Protein Synthesis \rightarrow Functional Proteins \rightarrow Protein Degradation In Proteasomes Following Tagging With Ubiquitin

Amino Acids \leftrightarrow Metabolites
Digestion of Proteins

Stomach: Pepsinogen \rightarrow Pepsin (max. act. pH 2)

Small Intestine: Trypsinogen \rightarrow Trypsin

Trypsin cleaves:
- Chymotrypsinogen to chymotrypsin
- Proelastase to elastase
- Procarboxyypeptidase to carboxyypeptidase

Aminopeptidases (from intestinal epithelia)
Intestinal Absorption

Amino Acids Oligopeptides

Lumen

Transport Protein

Oligopeptides

Peptidases

Amino Acids

Blood
Incorporation of NH$_4^+$ Into Organic Compounds

1) NH$_4^+$ + HCO$_3^-$ + 2 ATP $\xrightarrow{\text{Carbamoyl Phosphate Synthase I (CPS-I)}}$ NH$_2$CO$_2$PO$_3^{-2}$ + 2 ADP + Carbamoyl Phosphate + P$_i$ + 2 H$^+$

2) NH$_4^+$ + $\text{O}_2\text{CCH}_2\text{CH}_2\text{CCO}_2^-$ $\xrightarrow{\text{Glutamate dehydrogenase}}$ NH_3^+ + $\text{O}_2\text{CCH}_2\text{CH}_2\text{CHCO}_2^-$

TCA Cycle

"\text{Carbamoyl Phosphate}"

mitochondria

\(\text{NADPH} + \text{H}^+\)
Incorporation of NH_4^+ Into Organic Compounds (Cont.)

3) $\text{NH}_3^+ + \text{O}_2\text{CCH}_2\text{CH}_2\text{CHCO}_2^- + \text{NH}_4^+ + 2 \text{ATP}$

Glutamate

Glutamine Synthase
Mg^{++}

Glutamine

$\text{H}_2\text{NCCCH}_2\text{CH}_2\text{CHCO}_2^-$

N of glutamine donated to other compounds in synthesis of purines, pyrimidines, and other amino acids
Biosynthesis of Amino Acids: Transaminations

\[\text{Amino Acid}_1 + \alpha\text{-Keto Acid}_2 \rightleftharpoons \text{Amino Acid}_2 + \alpha\text{-Keto Acid}_1 \]

Glutamate

\[\text{NH}_3^+ \quad \text{O}_2\text{CCH}_2\text{CH}_2\text{CHCO}_2^- \]

\[\alpha\text{-Ketoglutarate} \]

Pyridoxal phosphate (PLP)-Dependent Aminotransferase

\[\text{O} \quad \text{R}-\text{CCO}_2^- \]

\[\text{NH}_2 \quad \text{R}-\text{CHCO}_2^- \]
Transaminations: Role of PLP
Blood levels of these aminotransferases, also called transaminases, are important indicators of liver disease.
Metabolic Classification of the Amino Acids

- Essential and Non-essential

- Glucogenic and Ketogenic
Non-Essential Amino Acids in Humans

- Not required in diet
- Can be formed from α-keto acids by transamination and subsequent reactions

- Alanine
- Asparagine
- Aspartate
- Glutamate
- Glutamine
- Glycine
- Proline
- Serine
- Cysteine (from Met*)
- Tyrosine (from Phe*)

* Essential amino acids
Essential Amino Acids in Humans

- Required in diet
- Humans incapable of forming requisite carbon skeleton

- Arginine*
- Histidine*
- Isoleucine
- Leucine
- Valine
- Lysine
- Methionine
- Threonine
- Phenylalanine
- Tryptophan

* Essential in children, not in adults
Glucogenic Amino Acids

- Aspartate
- Asparagine
- Arginine
- Phenylalanine
- Tyrosine
- Isoleucine
- Methionine
- Valine
- Glutamine
- Glutamate
- Proline
- Histidine
- Alanine
- Serine
- Cysteine
- Glycine
- Threonine
- Tryptophan

Metabolized to α-ketoglutarate, pyruvate, oxaloacetate, fumarate, or succinyl CoA

Phosphoenolpyruvate \rightarrow Glucose
Ketogenic Amino Acids

- Metabolized to acetyl CoA or acetoacetyl CoA

Animals cannot convert acetyl CoA or acetoacetyl CoA to pyruvate

- Isoleucine
- Leucine *
- Lysine *
- Threonine

- Tryptophan
- Phenylalanine
- Tyrosine

* Leucine and lysine are only ketogenic
Amino Acids Formed From α-Ketoglutarate

α-Ketoglutarate \rightarrow Transamination or Glutamate dehydrogenase

\rightarrow Glutamate \rightarrow Glutamine synthase

Glutamine \rightarrow Glutamine synthase

Glutamine \rightarrow Urea Cycle

Guanidino group \rightarrow Arginine

Proline \rightarrow Ornithine

4 Steps

5 Steps
GABA is an important inhibitory neurotransmitter in the brain. Drugs (e.g., benzodiazepines) that enhance the effects of GABA are useful in treating epilepsy.
Arginine Synthesis: The Urea Cycle

Glutamate + NH₃ → N-Acetylglutamate synthase

Activates

Carbamoyl phosphate

N-Acetylglutamate + Ornithine → Urea group

Ureido group

Citrulline

Ornithine transcarbamoylase (OTC) (mitochondria)

CPS-I

NH₄⁺ + HCO₃⁻ → NH₂CO₂PO₃⁻²

4 Steps
Formation of Serine

Glucose → Glycolysis → 3-Phosphoglycerate → 3-Phosphohydroxypyruvate

- Dehydrogenase: $\text{NAD}^+ \rightarrow \text{NADH} + \text{H}^+$
- Inhibits

Pyruvate → 3-Phosphoserine → Serine (Ser)

- Phosphatase

Glutamate → Transaminase: α-Ketoglutarate

3-Phosphoserine → Serine (Ser)
Conversion of Serine to Glycine

Folate → Dihydrofolate reductase → Tetrahydrofolate (FH₄) → Serine hydroxymethyl transferase (PLP-dep.) → Glycine

Key intermediate in biosynthesis of purines and formation of thymine

Important in biosynthesis of heme, porphyrins, and purines
Sulfur-Containing Amino Acids

Methionine (Essential)

\[\text{CH}_3\text{SCH}_2\text{CH}_2\text{CHCO}_2^- \] + \(\text{NH}_3^+ \text{ FH}_4 \)

Methionine Synthase (Vit. B12-dep.)

\[\text{HSCH}_2\text{CH}_2\text{CHCO}_2^- \] + \(\text{NH}_3^+ \text{ 5-Methyl FH}_4 \)

L-Homocysteine

Cystathionine \(\beta \)-synthase (PLP-dep.)

\[\text{Cys} \text {CO}_2^- \]

Cystathionine lyase

\[\text{NH}_3^+ \text{ 5-Methyl FH}_4 \]

Serine

\[\text{CH}_3\text{CHCH}_2\text{CO}_2^- \]

\(\beta \)-Hydroxybutyrate

Cysteine (Non-essential)

\[\text{SCH}_2\text{CH}_2\text{CHCO}_2^- \]

Cystathionine

\[\text{CH}_2\text{CHCO}_2^- \]

OH

\[\text{CH}_3\text{CHCH}_2\text{CO}_2^- \] + \(\text{HSCH}_2\text{CHCO}_2^- \)

\[\text{NH}_3^+ \text{ FH}_4 \]

Cystathionine lyase
Homocysteinurie
- Rare; deficiency of cystathionine β-synthase
- Dislocated optical lenses
- Mental retardation
- Osteoporosis
- Cardiovascular disease → death

High blood levels of homocysteine associated with cardiovascular disease
- May be related to dietary folate deficiency
- Folate enhances conversion of homocysteine to methionine
Methionine Metabolism: Methyl Donation

\[
\text{CH}_3\text{SCH}_2\text{CH}_2\text{CHCO}_2^- + \text{NH}_3^+ \rightarrow \text{S-Adenosyl methionine synthase} \rightarrow \text{ATP} \rightarrow \text{S-Adenosyl methionine (SAM)}
\]

Decarboxylated SAM

\[
\text{NH}_2\text{CH}_2\text{CH}_2\text{N} + \text{NH}_3^+ \rightarrow \text{CO}_2 \rightarrow \text{S-Adenosyl homocysteine}
\]

Methyl-transferases

\[
\text{R-H} \rightarrow \text{R-CH}_3
\]
Creatine and Creatinine

\[
\begin{align*}
\text{Arginine} & \quad \text{Glycine} & \quad \text{Ornithine} \\
\text{Guanidoacetate} & \quad S\text{-Adenosyl-homocysteine} & \quad \text{ADP} \\
\text{SAM} & \quad \text{ATP} & \quad \text{Phosphocreatine}
\end{align*}
\]
Creatine:
- Dietary supplement
- Used to improve athletic performance

Creatinine:
- Urinary excretion generally constant; proportional to muscle mass

Creatinine Clearance Test:
- Compares the level of creatinine in urine (24 hrs.) with the creatinine level in the blood
- Used to assess kidney function
- Important determinant in dosing of several drugs in patients with impaired renal function
Histidine Metabolism: Histamine Formation

Histidine:
-Synthesized in and released by mast cells
-Mediator of allergic response: vasodilation, bronchoconstriction (H₁ receptors)
 -H₁ blockers: Diphenhydramine (Benadryl), Loratidine (Claritin)
-Stimulates secretion of gastric acid (H₂ receptors)
 -H₂ blockers: Cimetidine (Tagamet); ranitidine (Zantac)
Phenylalanine and Tyrosine

Phenylalanine (Essential)

Tyrosine (Non-essential)

O₂

H₂O

Phenylalanine-4-Monooxygenase (Phenylalanine hydroxylase)

NH₃⁺

CH₂CHCO₂⁻

O₂

H₂O

Phenylalanine-4-Monooxygenase (Phenylalanine hydroxylase)

NH₃⁺

CH₂CHCO₂⁻

NADP⁺

NADPH + H⁺

Tetrahydrobiopterin (BH₄)

Dihydrobiopterin

H₂N

N

N

H

H₂N

O

CHCHCH₃

HO

OH
Normal Utilization of Phenylalanine

Phenylalanine

Protein (~25%)

Tyrosine (~75%)
Deficiency of Phe hydroxylase

Occurs in 1:20,000 live births in U.S.

Seizures, mental retardation, brain damage

Treatment: limit phenylalanine intake

Screening of all newborns mandated in all states
Catecholamine Biosynthesis

Tyrosine → Dihydroxyphenylalanine (DOPA) → Dopamine → Norepinephrine → Epinephrine (Adrenaline)

DOPA, dopamine, norepinephrine, and epinephrine are all neurotransmitters.
Tyrosine catabolism

Tyrosine

NH_3^+ Transamination HO

$\text{CH}_2\text{CHCO}_2^-$

p-Hydroxyphenylpyruvate

Homogentisate dioxygenase

O_2

Homogentisate

O_2

CO_2

Fumarate + acetoacetate

Deficient in alkaptonuria

Cleavage of aromatic ring

p-Hydroxyphenylpyruvate dioxygenase (ascorbate-dep.)
Melanin Formation

Tyrosine: \[\text{HO-CH}_{2}-\text{CHCO}_{2}^{-} \]

Tyr hydroxylase: \[\text{OH} \rightarrow \text{NH}_{3}^{+} \]

DOPA: \[\text{HO-CH}_{2}-\text{CHCO}_{2}^{-} \]

Tyrosinase: \[\text{DOPA} \rightarrow \text{Dopaquinone} \]

Melanin (Black polymer): \[\text{O} \rightarrow \text{O} \]

Highly colored polymeric intermediates

Melanin formed in skin (melanocytes), eyes, and hair
In skin, protects against sunlight
Albinism: genetic deficiency of tyrosinase
Tryptophan Metabolism: Serotonin Formation

Tryptophan (Trp) is converted to 5-Hydroxytryptophan through the action of Trp hydroxylase, which requires oxygen (O_2) and an ammonia (NH_3) group. The decarboxylation of 5-Hydroxytryptophan yields 5-Hydroxytryptamine (5-HT), also known as Serotonin.

Indole ring
Serotonin

• Serotonin formed in:
 • Brain (neurotransmitter; regulation of sleep, mood, appetite)
 • Platelets (platelet aggregation, vasoconstriction)
 • Smooth muscle (contraction)
 • Gastrointestinal tract (enterochromaffin cells - major storage site)

• Drugs affecting serotonin actions used to treat:
 • Depression
 • Serotonin-selective reuptake inhibitors (SSRI)
 • Migraine
 • Schizophrenia
 • Obsessive-compulsive disorders
 • Chemotherapy-induced emesis

• Some hallucinogens (e.g., LSD) act as serotonin agonists
L-Tryptophan

- Food supplement promoted for serotonin effects
- L-Tryptophan disaster (1989):
 - Eosinophilia-myalgia syndrome (EMS)
 - Severe muscle and joint pain
 - Weakness
 - Swelling of the arms and legs
 - Fever
 - Skin rash
 - Eosinophilia
 - Many hundreds of cases; several deaths
 - Traced to impurities
Serotonin Metabolism: 5-HIAA

Carcinoid tumors:
- Malignant GI tumor type
- Excretion of large amounts of 5-HIAA

5-Hydroxyindole acetic acid (5-HIAA) (Urine)
Serotonin Metabolism: Melatonin

Melatonin:
- Formed principally in pineal gland
- Synthesis controlled by light, among other factors
- Induces skin lightening
- Suppresses ovarian function
- Possible use in sleep disorders
Tryptophan Metabolism: Biosynthesis of Nicotinic Acid

Several steps

Nicotinic acid (Niacin)

Nicotinamide adenine dinucleotide (NAD)